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One of the most interesting effects accompanying flows Of polymer 
systems is the so-called "disintegration of  the melt." When this pheno- 
menon occurs, a jet of  molten polymer or concentrated polymer solu- 
tion ejected from a capillary suffers gross deformations of shape when 
the parameters determining the process of deformation reach certain 
critical values. Starting from the idea of specific elastic instability 
in flows of viscoelastic media,  reference [1] gives criteria for the on- 
set of  this phenomenon and shows its applicability through analysis of  
a Iarge amount of  experimental data. 

Slippage of a visoelastic fluid along the wall when moving at suf- 
ficiently high speeds is another possible cause of this effect. The 
problem of natural oscillations which appear in slippage of an incom- 
pressible Maxwetlian fluid in Couette flows is introduced in this ar- 
t icle in order to present a qualitative analysis of  this mechanism of  
the appearance of irregularities in flows. 
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Unfortunately, the literature lacks satisfactory data which would 
establish any quantitative laws of  slippage along the wall during rapid 
flows of melts  or soIutions of polymers. However, we may assume that 
the laws describing this phenomenon are analogous or very close to 
those established for dry friction of viscoelastic materials.  A typical 
curve of the dependence of the frictional force Q of such materials 
on the slippage velocity v has a max i mum which shifts to the left 
when the normal pressure is increased [2, 3]. For the sake of s implic-  
ity, we shall l imit  ourselves here to considering the case in which 
the ftictionaI force has a decreasing velocity characteristic on the 
assumption that d2Q/dv 2 > 0, Q(v) > 0, lira Q = 0 when v ~ ,o. This 
sort of assumption corresponds to a very high hydrostatic pressure in 
the system. 

In addition, we assume that irregularity in the process of  friction 
which appears with t ime-dependent  v is not important, that is, the 
frictional force can be described by a steady relationship Q(v). 

we shah formulate the basic assumptions in regard to processes of  
slippage along the wall. We assume that the fluid is loosened from 
the walls when the tangential stress on it reaches a critical value 
Q (0) = Q0. The quantity Q0, which is a measure of the strength of 
adhesion of a viscoelastic fluid to the material  of  the wall, depends, 
in particular, on the characteristics of  this f lu id-densi ty  p, viscosity 
~, and relaxation t ime 0. Since the density of  the majority of  poly- 
mers is approximately the same, Q0 = Q0(o, O). Dimensional analysis 
shows that Q0 ~ 7//0 = G. Consequently, the characteristic Q(v) also 
undergoes some changes with changes in the material  constants, that 
is, if  we give a certain curve for Q(v), we simultaneously give the 
parameters p, 77, and 0. Assuming, for the sake of simplicity, that the 
distance 2h between plates is also fixed, we obtain a single parameter 
which can be va r i ed - t he  relative velocity of  the plates 2V. 

It is cIear from symmetry considerations that the problem of  flows 
of a Maxwellian fluid between parallel plates moving in opposite 
directions at speeds V and - V  can be solved in the interval 0 _< y _< h, 
assuming that the speed is always zero on the lower boundary. The 

velocity field and the tangential stresses are determined from solving 
the system of equations 

#Vx ap~ 
P ~ = -~F , = ~ ~ . (1) 

The system of boundary and initial conditions is of  the form 

vx l t=o= O, P~ylt=o= O, 
(2) 

v~ lv=h=O,  %lu=h = V - - v ( t ) .  

When v(t) ~ 0, we have another relationship in addition to the 
last condition 

P~u lu=h = Q (~) (v ~ 0). (3) 

The problem (1)-(8) is a linear problem with non2inear boundary 
conditions. As we intend to obtain simple semiquantitative results, we 
shall solve it approximately here by averaging the quantities Vx and 
Pxy on the interval [0, h]. Making use of the results of  reference [4], 
we can show that the velocity distribution is of  the form 

Here U(t) is the variable velocity of the fluid at the movable plate 
and to ; h(pO/~) 1/2 << 0 is the t ime  required for elastic waves to prop- 
agate from the plate y = h m the plane y = O. Averaging equation 
(1) and taking the boundary conditions into consideration, we obtain 

d'g 
O -~- = %0 -- T, %o = ~ V (v = 0) , (5) 

d'~ rl 9h dv 
O "-~" = -f f  ( v -  v ) - ' ~ '  2 dt --  r  Q (v) (v :~=O) . (6) 

We shall seek the solution of equations in the class of  continuous 
piecewise smooth functions in the right half-plane of the phase plane 
(v, r) containing the axis v = 0. 
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On condition that v(0) = 0, we obtain from equation (5) 

(0 = %~ d - e-t/~ (7) 

Taking account of the hypothesis concerning the nature of slip- 
page along the wall which was formulated previously, it follows that 
slippage of the fluid along the wall begins only when 

V >  V . =  hQo/rl.~ 

Let us consider the case V > V*. When t = t* = - 0  in (1 - 0h/r}V,), 
the stress on the wall reaches the critical magnitude Q0 and motion 
with slippage begins which is described by equations (6). The initial 
conditions for this system is of  the form 

v I t = t .  = O, T l t = t .  = ~ ,  = Qo �9 

The phase trajectory of  the process can also be obtained from an 
equation foilowing from (6) 
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dr ph P (v) ~'r  
~ = -2~ ~ - -  Q (V) ' P ( , )  = ~ W - -  v) (s]  

with the initial condition r(0) = Q0. 
Equation (8) has a singularity (QO, v*) determined, as is readily 

seen. by the intersection of the curves Q(v) and P(v). The properties 

of Q (v) cited previously imply that when V increases, v ~ tends toward 
V, but remains smalter than V, and the quantity Q* = Q(v ~ tends 
toward zero (refer to Fig. 1). 

The lines r = P (v) constitute a one-parameter family of straight 
lines with different slopes. Considering the linearized equations 
(6) in the neighborhood of the singularity (Q~ v ~ in the usual 
manner and :aking account of  the properties of Q(v), we find that 
depending on the magnitude of V, four types of singularities are 
theoretically possible: a) a stable focus when Q'* = IdQ/dv](v = v ~ < 
< oh/20: b) an unstable focus when ph/20 < Q "  < 2p~/O)l/z; c) a 

center when Q'~ = oh/20; and d) an unstable node when @0 > (2p~/0)1/2 
(in case of equality, a degenerate node is produced). 

By making use of (8), it is also easy to determine the qualitative 
behavior of the integral curve from point A(0, Q0). In the curvilinear 
sector 1 bounded by the straight line P(v) and the curve Q(v), the 
function r (v) increases from Q0 at point A to max[r] at point B (Fig, 1), 
having an unbounded derivative at point A. Function r(v)  decreases 
very slowly (r '(v) ~ -oh /20 )  in sector 2 on section BC. In sector S, 
v(v) decreases more rapidly down to the intersection of the curve 
r(v)  with the characteristic Q (v) at point D, where the maximum 
slippage velocity max [v] is reached. Further, in sector 4 there is an 
additional decrease in r (v)  to the value of rain [r] which occurs at 
point E of the phase trajectory. In sector 5, the values of  r (v)  in- 
crease slightly ( r '  (v) ~ oh/20); this increase is accelerated in sector 
6. Two cases are possible-either r (v) intersects the characteristic 
Q(v) when 0 < v < max [v], or r(v)  intersects the axis v = 0 at 
some point r = r* (the second case is shown in Fig. 1). In the first 
case, the further behavior of the phase trajectory is wholly deter- 
mined by the type of singularity (v**, Q**), that is, either a stationary 
mode of flow with slippage is established if this point is a stable 
focus, or the phase trajectory is rotated a Iimit cycle and a self- 
oscillating mode without adhesion appears. In the second case, if 
the phase trajectory reaches the axis v = 0 at point r .  the process is 
either again described by equation (5) if lz*l ~ Q0, that is, the re- 
presentative point moves upward along the axis v = 0 to separation at 
the point Q 0 in the right half-plane, or, if {r* ] ~ Q0, the trajectory 
goes into the region v < 0. If the phase trajectory reaches the axis 
v = 0 at the time t = t* at the point I~'*l _< Q0, then, when t > t .  we 
have 

~(t)='x*exp[--t--t*~\ O ]  1- [ t - - t*,-I  (9) 

v (t) = 0 (t > t*),  (9) 
cont'd 

When the function r ( t )  reaches the value Q0, separation occurs 
again and the cycle described here is repeated. The self-oscillations 
appearing in this case are of a relaxation type (Figs. 1, 2a). 

If r* < -Q0, motions with negative slippage velocity are possible, 
and the self-oscillations appearing in this instance are similar to 
those appearing in solid dry friction [g]. 

Detailed evaluations based on investigations of majorizing equa- 
tions show that the following sequence of changes in modes of mo- 
tion when V exceeds the value V* is possible: 1) stationary flow with 
adhesion (V < V*); 2) reIaxation self-oscillations with adhesion; 3) 
self-oscillations with a shift to the left half-plane of the phase plane; 
4) relaxation self-oscillations reappear; and 5) steady motion with 
slippage. We note that the foregoing are associated with cases in 
which the characteristic Q (v)has the above-mentinned properties; 
the series of modes noted above may not appear in some forms of 
Q (v). On the other hand, if the absolute value of the derivative 
dQ/dv remains suffiniently high, even for large v, a self-osciilating 
mode without adhesion may appear between the fourth and fifth 
modes, Diagrams of changes in the slippage velocity and the stresses 
in different modes are presented in Fig. 2; reiaxation self-oscillations 
are shown in Fig. 2a, self-osc!llations without adhesion in Fig. 2b 
(the phase trajectory is included in the open region v > 0 of the phase 
plane), and the establishment of a stationary mode of slippage in Fig, 
2c. 

In conclusion, the authors thank G. I. Barenblatt for discussions 

and his constant interest in this work. 
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